Formamide-Free Genomic in situ Hybridization Allows Unambiguous Discrimination of Highly Similar Parental Genomes in Diploid Hybrids and Allopolyploids.

نویسندگان

  • Tae-Soo Jang
  • Hanna Weiss-Schneeweiss
چکیده

Polyploidy and hybridization play an important role in plant diversification and speciation. The application of genomic in situ hybridization (GISH) allows the identification of parental genomes in hybrids, thus elucidating their origins and allowing for analysis of their genomic evolution. The performance of GISH depends on the similarity of the parental genomes and on the age of hybrids. Here, we present the formamide-free GISH (ff-GISH) protocol applied to diploid and polyploid hybrids of monocots (Prospero, Hyacinthaceae) and dicots (Melampodium, Asteraceae) differing in similarity of the parental genomes and in chromosome and genome sizes. The efficiency of the new protocol is compared to the standard GISH protocol. As a result, ff-GISH allowed efficient labeling and discrimination of the parental chromosome sets in diploid and allopolyploid hybrids in Prospero autumnale species complex. In contrast, the standard GISH protocol failed to differentiate the parental genomes due to high levels of similar repetitive DNA. Likewise, an unambiguous identification of parental genomes in allotetraploid Melampodium nayaritense (Asteraceae) was possible after ff-GISH, whereas the standard GISH hybridization performance was suboptimal. The modified method is simple and non-toxic and allows the discrimination of very similar parental genomes in hybrids. This method lends itself to modifications and improvements and can also be used for FISH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Genomic In Situ Hybridization in Horticultural Science

Molecular cytogenetic techniques, such as in situ hybridization methods, are admirable tools to analyze the genomic structure and function, chromosome constituents, recombination patterns, alien gene introgression, genome evolution, aneuploidy, and polyploidy and also genome constitution visualization and chromosome discrimination from different genomes in allopolyploids of various horticultura...

متن کامل

Cytoplasmic and genomic effects on meiotic pairing in Brassica hybrids and allotetraploids from pair crosses of three cultivated diploids.

Interspecific hybridization and allopolyploidization contribute to the origin of many important crops. Synthetic Brassica is a widely used model for the study of genetic recombination and "fixed heterosis" in allopolyploids. To investigate the effects of the cytoplasm and genome combinations on meiotic recombination, we produced digenomic diploid and triploid hybrids and trigenomic triploid hyb...

متن کامل

Identifying parental chromosomes and genomic rearrangements in animal hybrid complexes of species with small genome size using Genomic In Situ Hybridization (GISH)

Genomic In Situ Hybridization (GISH) is a powerful tool to identify and to quantify genomic constituents in allopolyploids, and is mainly based on hybridization of highly and moderate repetitive sequences. In animals, as opposed to plants, GISH has not been widely used in part because there are technical problems in obtaining informative results. Using the allopolyploid Squalius alburnoides Ste...

متن کامل

Use of fluorescence in situ hybridization as a tool for introgression analysis and chromosome identification in coffee (Coffea arabica L.).

Fluorescence in situ hybridization (FISH) was used to study the presence of alien chromatin in interspecific hybrids and one introgressed line (S.288) derived from crosses between the cultivated species Coffea arabica and the diploid relatives C. canephora and C. liberica. In situ hybridization using genomic DNA from C. canephora and C. arabica as probes showed elevated cross hybridization alon...

متن کامل

Genetic relationships among Hylocereus and Selenicereus vine cacti (Cactaceae): evidence from hybridization and cytological studies.

BACKGROUND AND AIMS Hylocereus and Selenicereus are native to tropical and sub-tropical America. Based on its taxonomic status and crossability relations it was postulated that H. megalanthus (syn. S. megalanthus) is an allotetraploid (2n = 4x = 44) derived from natural hybridization between two closely related diploid taxa. The present work aimed at elucidating the genetic relationships betwee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cytogenetic and genome research

دوره 146 4  شماره 

صفحات  -

تاریخ انتشار 2015